Вопрос задан 21.04.2019 в 18:37. Предмет Геометрия. Спрашивает Кузнецов Арсений.

В треугольник, стороны которого равны 8, 13 и 15 вписана окружность. Найдите длины отрезков этих

сторон, на которые они делятся точками касания с вписанной окружностью.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рудик Саша.

треугольник АВС, АВ=8, ВС=13, АС=15, т.К -касание на АВ, т.Л-касание на ВС, т.М-касание на АС, АК=АМ как касательные, проведенные из одной точки к окружности, АК=АМ=х, ВК=АВ-АК=8-х, ВК=ВЛ=8-х - как касательные...., МС=АС-АМ=15-х, МС=СЛ=15-х как касательные...., ВС=ВЛ+СЛ, 13=8-х+15-х, 13=23-2х, х=5=АК, ВК=8-5=3, ВЛ=8-5=3, СЛ=15-5=10, МС=15-5=10
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос