Вопрос задан 10.05.2018 в 04:37. Предмет Геометрия. Спрашивает Кириенко Михаил.

В окружности проведены три попарно соединяющиеся хорды. Длина одной из них равна а. Точки

пересечения делят каждую хорду на три части, средняя из которых в два раза больше каждой из двух остальных частей. Найдите радиус окружности.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петухова Вероника.

Простым перемножением длин отрезков легко показать, что все хорды равны. Отсюда сразу следует, что углы между ними 60 градусов. "Средние" части хорд (у которых длина а/2) образуют равносторонний треугольник. Из соображений симметрии понятно, что центр этого треугольника совпадает с центром нашей окружности (а где еще могут пересекаться перпендикуляры через середины "СРЕДНИХ" ЧАСТЕЙ :))) Нас интересует расстояние до хорды, которое равно радиусу окружности, вписанной в этот треугольник, то есть d = a*корень(3)/12; (напоминаю, что треугольник имеет стороны a/2)

Теперь, зная расстояние от хорды длины а, мы можем вычислить радиус.

R^2 = (a/2)^2 + d^2 = a^2*(1/4 + 3/144) = a^2*39/144; R = a*корень(39)/12;

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос