Вопрос задан 05.04.2019 в 19:54. Предмет Геометрия. Спрашивает Габбасов Владик.

Один из углов треугольника равен 60. Найдите расстояние между проекциями середины противоположной

стороны треугольника на две другие его стороны, если высоты треугольника, опущенные на эти стороны равны 2 и 4.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Волк Аня.

Пусть О₁ и О₂- проекции точки О на стороны АВ и АС треугольника АВС соответственно.

ОО₁ и ОО₂ перпендикулярны к АВ и АС соответственно и параллельны высотам СН₁ и ВН₂ к сторонам  АВ и АС соответственно.

Поскольку ОВ=ОС, то ОО₁ и ОО₂ средние линии треугольников СН₁В и ВН₂С соответственно и равны:

OO_1=\frac{CH_1}{2}=\frac{4}{2}=2

 

OO_2=\frac{BH_2}{2}=\frac{2}{2}=1

Рассмотрим четырёхуголник АО₁ОО₂:

Углы О₁ и О₂ - прямые, угол А=60⁰, значит угол О=360-(90+90+60)=120⁰

По теореме косинусов находим О₁О₂:

O_1O_2=\sqrt{OO_1^2+OO_2^2-2\cdot OO_1\cdot OO_2\cdot cos120^0}=\\\\\sqrt{2^2+1^2-2\cdot2\cdot1\cdot(-\frac{1}{2})}=\sqrt{5+2}=\sqrt7

Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;)))

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос