
Вопрос задан 27.03.2019 в 08:05.
Предмет Геометрия.
Спрашивает Черепанов Сергей.
В треугольнике АВС со сторонами 13, 14 и 15 см. Н, М и L – точки пересечения его высот, медиан и
биссектрис, соответственно. Найдите площадь треугольника НМL.

Ответы на вопрос

Отвечает Лисовая Ангелина.
Попробуем координатный метод
стартуем в начале координат, от него вправо сторона длиной 15, вправо вверх сторона 14, И из точки (15;0) влево вверх сторона 13
Координата третей вершины найдётся из системы
x^2+y^2=14^2
(x-15)^2+y^2=13^2
вычтем из второго первое
x^2 + y^2 = 196
x^2 + y^2 - 30 x = -56
-----------
30х = 252
x = 42/5
y^2 = 196 - (42/5)^2 = 3136/25
y = +- 56/5, отрицательный корень нам не нужен
y = 56/5
Итак, три вершины
А(0;0) В(15;0) С(8.4;11.2)
---------------------------------
начнём с медиан.
медиана из вершины А пересекает сторону ВС в точке
1/2((15;0)+(8.4;11.2)) = (11.7;5.6)
уравнение этой медианы
y = 5.6/11.7 x
медиана из вершины В пересекает сторону АС в точке
1/2((0;0)+(8.4;11.2)) = (4.2;5.6)
y=kx+b
5.6=4.2k+b
0=15k+b
k = -14/27
b = 70/9
y=-14/27x+70/9
и точка пересечения медиан найдётся из решения системы
y = 5.6/11.7x
y=-14/27x+70/9
-------------
x = 39/5
y = 56/15
Точка пересечения медиан
М(39/5;56/15)
--------------------------------------
теперь высоты
Проще всего с вертикальной. Её уравнение x=8.4
Уравнение прямой ВС
В(15;0) С(8.4;11.2)
y=kx+b
11.2=8.4k+b
0=15k+b
k = -56/33
b = 280/11
y = -56/33x + 280/11
собственно, нам b не нужно, а нужен угловой коэффициент для построения перпендикуляра к стороне BC
В уравнении перпендикуляра угловой коэффициент будет равен
k₁ = -1/k = 33/56
а b₁ равен 0, т.к. высота исходит из начала координат
y = 33/56x
x = 8.4
решение
x = 42/5, y = 99/20
Это координаты точки пересечения высот
H(42/5;99/20)
--------------------------------------------------------------
теперь биссектрисы
Уравнение стороны АС
y=11.2/8.4x=4/3x
координата точки на расстоянии 1 от начала координат будет
y^2+x^2=1^2
16/9x^2+x^2 = 1
x=+-3/5, отрицательный корень не нужен
x=3/5
y=4/5
Единичный вектор по стороне АВ будет иметь координаты (1;0)
среднее арифметическое между последними двумя точками, т.е. точка, принадлежащая биссектрисе
1/2((3/5;4/5)+(1;0)) = 1/2(8/5;4/5) = (4/5;2/5)
Уравнение биссектрисы из точки А
y=1/2x
Уравнение прямой ВС было в прошлом пункте
y = -56/33x + 280/11
единичный вектор от точки В(15;0) к точке С(8.4;11.2)
y^2+(x-15)^2=1^2
(-56/33x + 280/11)^2+(x-15)^2=1
(4225 (x - 15)^2)/1089 = 1
два решения
x₁ = 942/65
x₂ = 1008/65 - второй корень, от точки С, нам не нужен
x = 942/65
y = -56/33x + 280/11 = -56/33*942/65 + 280/11 = 56/65
Единичный вектор от В к С
(942/65;56/65)
Единичный вектор от В к A
(14;0)
Их среднее арифметическое
(926/65;28/65)
Это вторая точка биссектрисы из угла В(15;0)
28/65=k926/65+b
0=15k+b
k = -4/7
b = 60/7
y = -4/7x + 60/7
решаем совместно с
y=1/2x
точка пересечения
x = 8
y = 4
И это точка пересечения биссектрис
L(8;4)
-------------------
М(39/5;56/15)
H(42/5;99/20)
L(8;4)
Площадь треугольника найдём через координаты, хотя возможны и другие методы
![S = \frac{1}{2} * det \left[\begin{array}{cc} x_{1}-x_{3}&y_{1}-y_{3}\\x_{2}-x_{3}&y_{2}-y_{3}\end{array}\right] =\\ =\frac{1}{2} ((x_{1}-x_{3})(y_{2}-y_{3})-(y_{1}-y_{3})(x_{2}-x_{3})) S = \frac{1}{2} * det \left[\begin{array}{cc} x_{1}-x_{3}&y_{1}-y_{3}\\x_{2}-x_{3}&y_{2}-y_{3}\end{array}\right] =\\ =\frac{1}{2} ((x_{1}-x_{3})(y_{2}-y_{3})-(y_{1}-y_{3})(x_{2}-x_{3}))](https://tex.z-dn.net/?f=S+%3D+%5Cfrac%7B1%7D%7B2%7D+%2A+det+%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D+x_%7B1%7D-x_%7B3%7D%26y_%7B1%7D-y_%7B3%7D%5C%5Cx_%7B2%7D-x_%7B3%7D%26y_%7B2%7D-y_%7B3%7D%5Cend%7Barray%7D%5Cright%5D+%3D%5C%5C+%3D%5Cfrac%7B1%7D%7B2%7D+%28%28x_%7B1%7D-x_%7B3%7D%29%28y_%7B2%7D-y_%7B3%7D%29-%28y_%7B1%7D-y_%7B3%7D%29%28x_%7B2%7D-x_%7B3%7D%29%29)
S=((39/5-8)(99/20-4)-(56/15-4)(42/5-8))/2 = -1/24
стартуем в начале координат, от него вправо сторона длиной 15, вправо вверх сторона 14, И из точки (15;0) влево вверх сторона 13
Координата третей вершины найдётся из системы
x^2+y^2=14^2
(x-15)^2+y^2=13^2
вычтем из второго первое
x^2 + y^2 = 196
x^2 + y^2 - 30 x = -56
-----------
30х = 252
x = 42/5
y^2 = 196 - (42/5)^2 = 3136/25
y = +- 56/5, отрицательный корень нам не нужен
y = 56/5
Итак, три вершины
А(0;0) В(15;0) С(8.4;11.2)
---------------------------------
начнём с медиан.
медиана из вершины А пересекает сторону ВС в точке
1/2((15;0)+(8.4;11.2)) = (11.7;5.6)
уравнение этой медианы
y = 5.6/11.7 x
медиана из вершины В пересекает сторону АС в точке
1/2((0;0)+(8.4;11.2)) = (4.2;5.6)
y=kx+b
5.6=4.2k+b
0=15k+b
k = -14/27
b = 70/9
y=-14/27x+70/9
и точка пересечения медиан найдётся из решения системы
y = 5.6/11.7x
y=-14/27x+70/9
-------------
x = 39/5
y = 56/15
Точка пересечения медиан
М(39/5;56/15)
--------------------------------------
теперь высоты
Проще всего с вертикальной. Её уравнение x=8.4
Уравнение прямой ВС
В(15;0) С(8.4;11.2)
y=kx+b
11.2=8.4k+b
0=15k+b
k = -56/33
b = 280/11
y = -56/33x + 280/11
собственно, нам b не нужно, а нужен угловой коэффициент для построения перпендикуляра к стороне BC
В уравнении перпендикуляра угловой коэффициент будет равен
k₁ = -1/k = 33/56
а b₁ равен 0, т.к. высота исходит из начала координат
y = 33/56x
x = 8.4
решение
x = 42/5, y = 99/20
Это координаты точки пересечения высот
H(42/5;99/20)
--------------------------------------------------------------
теперь биссектрисы
Уравнение стороны АС
y=11.2/8.4x=4/3x
координата точки на расстоянии 1 от начала координат будет
y^2+x^2=1^2
16/9x^2+x^2 = 1
x=+-3/5, отрицательный корень не нужен
x=3/5
y=4/5
Единичный вектор по стороне АВ будет иметь координаты (1;0)
среднее арифметическое между последними двумя точками, т.е. точка, принадлежащая биссектрисе
1/2((3/5;4/5)+(1;0)) = 1/2(8/5;4/5) = (4/5;2/5)
Уравнение биссектрисы из точки А
y=1/2x
Уравнение прямой ВС было в прошлом пункте
y = -56/33x + 280/11
единичный вектор от точки В(15;0) к точке С(8.4;11.2)
y^2+(x-15)^2=1^2
(-56/33x + 280/11)^2+(x-15)^2=1
(4225 (x - 15)^2)/1089 = 1
два решения
x₁ = 942/65
x₂ = 1008/65 - второй корень, от точки С, нам не нужен
x = 942/65
y = -56/33x + 280/11 = -56/33*942/65 + 280/11 = 56/65
Единичный вектор от В к С
(942/65;56/65)
Единичный вектор от В к A
(14;0)
Их среднее арифметическое
(926/65;28/65)
Это вторая точка биссектрисы из угла В(15;0)
28/65=k926/65+b
0=15k+b
k = -4/7
b = 60/7
y = -4/7x + 60/7
решаем совместно с
y=1/2x
точка пересечения
x = 8
y = 4
И это точка пересечения биссектрис
L(8;4)
-------------------
М(39/5;56/15)
H(42/5;99/20)
L(8;4)
Площадь треугольника найдём через координаты, хотя возможны и другие методы
S=((39/5-8)(99/20-4)-(56/15-4)(42/5-8))/2 = -1/24


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili