
Вопрос задан 01.05.2018 в 16:42.
Предмет Геометрия.
Спрашивает Алексеева Аня.
Радиус окружности, описанной около треугольника АВС, равен 6 см. найдте радус окружности,
описанногооколо треугольника АОС, где О- точка пересеченния биссектрис треугольника АВС , если угол авс 60 градусов

Ответы на вопрос

Отвечает Фомина Диана.
В треугольнике АВС R=АС/2sinB ⇒ AC=2R·sinB=2·6·√3/2=6√3 см.
∠А+∠С=180-∠В=180-60=120°.
В тр-ке АОС ∠ОАС+∠ОСА=(∠А+∠С)/2=120/2=60° (так как АО и СО биссектрисы).
∠АОС=180-(∠ОАС+∠ОСА)=180-60=120°.
Радиус описанной окружности около тр-ка АОС:
R₁=AC/2sin∠АОС=6√3·2/(2·√3)=6 см - это ответ.
Таким образом, радиусы описанных окружностей треугольников АВС и АОС равны, но центры окружностей лежат в разных точках.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili