
Диагональ осевого сечения цилиндра равен 18 и образует с основанием угол 30 градусов. Найти площадь
поверхности, объём цилиндра?

Ответы на вопрос




Diagonal of the Cylinder's Cross-Section
To find the diagonal of the cylinder's cross-section, we need to use the given information that the diagonal forms a 30-degree angle with the base and has a length of 18.Let's denote the radius of the cylinder as r and the height as h. The diagonal of the cross-section can be represented as the hypotenuse of a right triangle, with one side being the radius of the cylinder and the other side being the height of the cylinder.
Using trigonometry, we can express the diagonal in terms of the radius and height:
diagonal = √(r^2 + h^2)
Since we know that the diagonal has a length of 18, we can write the equation as:
18 = √(r^2 + h^2)
To solve for either the radius or the height, we need another equation. Let's use the fact that the diagonal forms a 30-degree angle with the base of the cylinder. This means that the height of the cylinder is equal to the radius multiplied by the tangent of 30 degrees:
h = r * tan(30°)
Now we have two equations:
18 = √(r^2 + h^2)
h = r * tan(30°)
We can substitute the second equation into the first equation to solve for the radius:
18 = √(r^2 + (r * tan(30°))^2)
Simplifying this equation will give us the value of the radius.
Surface Area of the Cylinder
To find the surface area of the cylinder, we need to calculate the areas of the two bases and the lateral surface area.The area of each base is given by the formula π * r^2.
The lateral surface area is given by the formula 2 * π * r * h.
Adding the areas of the two bases and the lateral surface area will give us the total surface area of the cylinder.
Volume of the Cylinder
The volume of the cylinder is given by the formula π * r^2 * h.Now, let's calculate the values of the radius, surface area, and volume of the cylinder using the given information.
Calculation
Using the equation h = r * tan(30°), we can substitute this into the equation 18 = √(r^2 + (r * tan(30°))^2) to solve for the radius.Simplifying the equation, we get:
18 = √(r^2 + (r * √3/3)^2)
Squaring both sides of the equation, we get:
324 = r^2 + (r^2 * (√3/3))^2
Simplifying further, we get:
324 = r^2 + (r^2 * 1/3)
Combining like terms, we get:
324 = (4/3) * r^2
Solving for r^2, we get:
r^2 = (3/4) * 324
Taking the square root of both sides, we get:
r = √(3/4) * √324
Simplifying, we get:
r = √(3/4) * 18
Calculating the value of r, we find:
r ≈ 9.84
Now that we have the value of the radius, we can calculate the surface area and volume of the cylinder.
The surface area of the cylinder is given by:
Surface Area = 2 * π * r^2 + 2 * π * r * h
Substituting the values of r and h, we get:
Surface Area = 2 * π * (9.84)^2 + 2 * π * 9.84 * (9.84 * √3/3)
Calculating the value of the surface area, we find:
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84 * 16.9706
**Surface Area ≈ 2 * π * 96.5376 + 2 * π * 9.84


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili