Вопрос задан 26.02.2019 в 21:02. Предмет Геометрия. Спрашивает Куропаткин Ваня.

Из прямоугольного треугольника со сторонами 10 см и 8 см вырезан квадрат со стороной 5 см. Найдите

площадь оставшейся части. Ответ дайте в см2.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Щукина Таня.
Возможно ли вписать в прямоугольный треугольник с катетами 8 и 10 см квадрат со стороной 5 см отдельная задача, но допустим. Тогда
решение в скане. Учтите, рисунки в решении условные так построить квадрат стороной 5 в прямоугольном треугольнике нельзя.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Описание задачи:

У нас есть прямоугольный треугольник со сторонами 10 см и 8 см. В этом треугольнике вырезан квадрат со стороной 5 см. Мы должны найти площадь оставшейся части треугольника.

Решение:

Чтобы найти площадь оставшейся части треугольника, мы должны вычесть площадь вырезанного квадрата из площади исходного треугольника.

1. Найдем площадь исходного треугольника с помощью формулы площади прямоугольного треугольника: S = (a * b) / 2, где a и b - длины катетов треугольника.

Подставив значения a = 10 см и b = 8 см, получаем: S_треугольника = (10 * 8) / 2 = 40 см^2

2. Найдем площадь вырезанного квадрата, которая равна стороне квадрата в квадрате: S_квадрата = a^2.

Подставив значение a = 5 см, получаем: S_квадрата = 5^2 = 25 см^2

3. Вычтем площадь вырезанного квадрата из площади исходного треугольника, чтобы найти площадь оставшейся части: S_оставшейся_части = S_треугольника - S_квадрата = 40 см^2 - 25 см^2 = 15 см^2

Ответ:

Площадь оставшейся части треугольника составляет 15 см^2.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос