
Помогите решить неравенство 5(х-3)(х-4) >0 как это изобразить на координатной прямой мы пишем 5
отмечаем или нет?

Ответы на вопрос

Отмечаем точки 3 и 4. Точки выколотые, т.к. неравенство строгое.
Расставляем знаки на полученных промежутках: + - +
Выбираем промежутки с "+", т.к. в неравенстве знак ">"
Ответ: x∈(-∞; 3) U (4; +∞)



Solving the Inequality
To solve the inequality 5(x-3)(x-4) > 0, we can use the concept of interval notation and the zero-product property. Here's how we can proceed:
1. Find the critical points by setting each factor equal to zero and solving for x: - Setting x-3 = 0, we get x = 3. - Setting x-4 = 0, we get x = 4.
2. Plot the critical points on a number line. We have x = 3 and x = 4.
3. Choose test points from each interval created by the critical points and evaluate the inequality. We can choose x = 0, x = 3.5, and x = 5 as test points.
- For x = 0: - 5(0-3)(0-4) = 5(-3)(-4) = 60, which is greater than 0. - For x = 3.5: - 5(3.5-3)(3.5-4) = 5(0.5)(-0.5) = -1.25, which is less than 0. - For x = 5: - 5(5-3)(5-4) = 5(2)(1) = 10, which is greater than 0.
4. Analyze the intervals based on the signs of the test points: - From x = 0 to x = 3, the inequality is greater than 0. - From x = 3 to x = 4, the inequality is less than 0. - From x = 4 to positive infinity, the inequality is greater than 0.
Graphing on a Coordinate Plane
To graph the inequality 5(x-3)(x-4) > 0 on a coordinate plane, we can follow these steps:
1. Draw a horizontal number line and mark the critical points x = 3 and x = 4.
2. Divide the number line into three intervals based on the critical points: (-∞, 3), (3, 4), and (4, +∞).
3. Choose a test point from each interval and evaluate the inequality.
- For the interval (-∞, 3), we can choose x = 0 as a test point. Substituting x = 0 into the inequality, we get 5(0-3)(0-4) = 60, which is greater than 0. - For the interval (3, 4), we can choose x = 3.5 as a test point. Substituting x = 3.5 into the inequality, we get 5(3.5-3)(3.5-4) = -1.25, which is less than 0. - For the interval (4, +∞), we can choose x = 5 as a test point. Substituting x = 5 into the inequality, we get 5(5-3)(5-4) = 10, which is greater than 0.
4. Based on the signs of the test points, we can determine the solution to the inequality:
- The solution is greater than 0 for the intervals (-∞, 3) and (4, +∞). - The solution is less than 0 for the interval (3, 4).
Therefore, the solution to the inequality 5(x-3)(x-4) > 0 is x < 3 or x > 4.
Please note that the critical points x = 3 and x = 4 are not included in the solution because the inequality is strict (greater than 0).


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili