Вопрос задан 21.02.2019 в 18:09. Предмет Геометрия. Спрашивает Галимзянов Рамазан.

Найдите стороны равнобедренного треугольника, если его периметр равен 33 см, а основание на 3 см

меньше боковой стороны.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Князев Дима.

Равнобедренный треугольник - это треугольник, у которого две стороны равны (называют боковыми).

Пусть боковая сторона равна х см, тогда основание будет равно (х - 3 ) см. Т.к. периметр - это сумма длин всех сторон и он равен 33 см, то составим и решим уравнение

х + х + х - 3 = 33,

3х - 3 = 33,

3х = 33 + 3,

3х = 36,

х = 36 : 3,

х = 12.

Значит, боковая сторона равна 12 см, а основание равно 12 - 3 = 9 (см).

Ответ: 12 см, 12 см и 9 см.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим боковую сторону равнобедренного треугольника через x см. Также, основание будет равно (x - 3) см, так как оно на 3 см меньше боковой стороны.

Периметр треугольника равен сумме длин всех его сторон. В данном случае, мы знаем, что периметр равен 33 см. Запишем это в уравнение:

2x + (x - 3) = 33

Упростим уравнение:

2x + x - 3 = 33 3x - 3 = 33 3x = 36 x = 12

Таким образом, боковая сторона равнобедренного треугольника равна 12 см. Основание будет равно (12 - 3) = 9 см.

Таким образом, стороны равнобедренного треугольника равны 12 см, 12 см и 9 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос