
Вопрос задан 14.02.2019 в 20:03.
Предмет Геометрия.
Спрашивает Ковальчук Ірина.
В правильной четырехугольной усеченной пирамиде стороны оснований равны 10 и 8 см , а высота корень
из 3. найдите площадь полной поверхности.

Ответы на вопрос

Отвечает Прогер Богдан.
ABCDA₁B₁C₁D₁ - правильная четырехугольная усеченная пирамида. основания - квадраты, боковые грани - равнобедренные трапеции
Sпол.пов=Sбок.пов.+Sверх.осн+Sнижн. осн
Sбок.пов=((a+b)*h/2)*4. Sбок.пов=(a+b)*h*2
a=8 см, b=10 см, h -высота боковой грани
AA₁C₁C- диагональное сечение - равнобедренная трапеция.
АС=√(10²+10²). АС=10√2 см -диагональ нижнего основания
А₁С₁=√(8²+8²) А₁С₁=8√2 см -диагональ верхнего основания
ОО₁=√3 см - высота усеченной пирамиды
А₁Р=С₁К=ОО₁. РК=8√2
АР=КС=(10√2-8√2)/2=√2
ΔАРА₁=ΔСРС₁.
по теореме Пифагора: АА₁²=(√2)²+(√3)². АА₁²=5
A₁M_|_AD, C₁N_|_AD. A₁M=C₁N
ΔAMA₁=ΔCNC₁. AM=CN=(10-8)/2. AM=CN=1 см
по теореме Пифагора: 5²=1²+A₁M². A₁M=2 см
Sбок.пов=(8+10)*2*2=72
Sверх. осн=8*8=64
Sнижн.осн=10*10=100
Sполн.пов=72+64+100
Sполн.пов=236 см²
Sпол.пов=Sбок.пов.+Sверх.осн+Sнижн. осн
Sбок.пов=((a+b)*h/2)*4. Sбок.пов=(a+b)*h*2
a=8 см, b=10 см, h -высота боковой грани
AA₁C₁C- диагональное сечение - равнобедренная трапеция.
АС=√(10²+10²). АС=10√2 см -диагональ нижнего основания
А₁С₁=√(8²+8²) А₁С₁=8√2 см -диагональ верхнего основания
ОО₁=√3 см - высота усеченной пирамиды
А₁Р=С₁К=ОО₁. РК=8√2
АР=КС=(10√2-8√2)/2=√2
ΔАРА₁=ΔСРС₁.
по теореме Пифагора: АА₁²=(√2)²+(√3)². АА₁²=5
A₁M_|_AD, C₁N_|_AD. A₁M=C₁N
ΔAMA₁=ΔCNC₁. AM=CN=(10-8)/2. AM=CN=1 см
по теореме Пифагора: 5²=1²+A₁M². A₁M=2 см
Sбок.пов=(8+10)*2*2=72
Sверх. осн=8*8=64
Sнижн.осн=10*10=100
Sполн.пов=72+64+100
Sполн.пов=236 см²



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Площадь полной поверхности усеченной пирамиды можно найти по формуле:
S = B1 + B2 + (P1 + P2) * l
Где B1 и B2 - площади оснований, P1 и P2 - периметры оснований, l - образующая.
Для начала найдем периметры оснований: P1 = 10 * 4 = 40 см P2 = 8 * 4 = 32 см
Затем найдем площади оснований: B1 = 10^2 = 100 см^2 B2 = 8^2 = 64 см^2
Теперь найдем образующую: l = √(высота^2 + (половина разности сторон оснований)^2) l = √((√3)^2 + ((10-8)/2)^2) l = √(3 + 1) = √4 = 2 см
Теперь можем найти площадь полной поверхности: S = 100 + 64 + (40 + 32) * 2 S = 164 + 144 S = 308 см^2
Итак, площадь полной поверхности усеченной пирамиды равна 308 квадратным сантиметрам.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili