
докажите, что для любых трёх точек,не лежащих на одной прямой ,справедливы неравенства :
AB<AC+CB,AC<AB+BC,BC<BA+AC

Ответы на вопрос

Это просто утверждения о том, что длина стороны треугольника меньше суммы длин остальных сторон.
Наверно, можно придумать какое-то "доказательство", но это чаще всего принимают аксиомой.
Хотя "доказательство" в курсе геометрии также приводится. Отложим на продолжении прямой АС отрезок СD=BC. Треугольник CDB - равнобедренный, поэтому у него равны углы при основании. Очевидно, угол D больше угла ABD (внутри последнего помещается угол, равный углу D). Т.к. против Ольшего угла лежит бОльшая сторона, то AD>AB. А т.к. AD=AC+CB, то неравенство доказано.
Несколько слов о том, почему "доказательство". Дело в том, что в школьной геометрии аккуратно (а иногда и не очень) обходится стороной вопрос о том, что же такое "длина". Можно говорить о том, что это "сколько раз один отрезочек помещается в другом". Но существуют несоизмеримые отрезки (т.е. длины этих отрезков не относятся друг к другу как целые числа). Почему в таком случае все-таки длина существует, строго говоря не очень понятно. Поэтому "длину" определяют с помощью набора аксиом, одной из которых обычно выбираю неравенство треугольника.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili