
Вопрос задан 30.01.2019 в 07:33.
Предмет Геометрия.
Спрашивает Смирнов Андрей.
В равнобедренном треугольнике NLT проведена биссектриса TM угла T у основания NT, ∡TML=72°.
Определи величины углов данного треугольника (если это необходимо, округли ответ до тысячных). ∡N= ° ∡T= ° ∡L= °


Ответы на вопрос

Отвечает Лубенец Елизавета.
В тр-ке NMT ∠ТNM+∠NTM=∠TML=72° (Величина смежного угла тр-ка равна сумме двух других его внутренних углов).
Пусть ∠LNТ=∠LТN=x, тогда ∠NTM=x/2,
x+x/2=72,
1.5x=72°,
x=48°.
В тр-ке NLТ ∠N=∠T=48°.
∠L=180-∠N-∠T=180-2·48=84°.
Пусть ∠LNТ=∠LТN=x, тогда ∠NTM=x/2,
x+x/2=72,
1.5x=72°,
x=48°.
В тр-ке NLТ ∠N=∠T=48°.
∠L=180-∠N-∠T=180-2·48=84°.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili