Вопрос задан 25.01.2019 в 11:23. Предмет Геометрия. Спрашивает Кадуцкий Никита.

Точка М лежит на стороне АВ параллелограмма АВСД и делит эту сторону в отношении АМ:МВ=3:4. Отрезки

ДМ и АС пересекаются в точке К. Найдите площадь параллелограмм, если площадь треугольника АКД равнв 63.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хрупачева Ксения.

Дополнительно проведем DE перпенд. АС. Тогда площадь пар-ма равна двум площадям тр-ка АСD. S = 2*(AC*DE/2) = AC*DE.

Тр-ик АКМ подобен тр-ку DКС, значит:

АК/КС  =  АМ/СD = 3/7 (из условия). Следовательно:

АК/АС = 3/10,  то есть АК = 0,3АС.

DE - высота и тр-ка АСD и высота тр-ка AKD.

S(AKD) = АК*DE/2 =  0,3АС*DE/2 = 0,15*S = 63.

S= 63/0,15 = 420

Ответ: 420  

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос