
Вопрос задан 29.12.2018 в 02:05.
Предмет Геометрия.
Спрашивает Дикий Владимир.
Две окружности, радиус одной из которых вдвое больше радиуса другой, касаются друг друга в точке C.
К этим окружностям проведена общая внешняя касательная, касающаяся этих окружностей в точках A и B. Найдите сумму AB+BC, если радиус меньшей окружности равен корени из 3 умножить на разность двух и корня из двух

Ответы на вопрос

Отвечает Приходкин Саша.
Пусть K и M - центры малой и большой окружностей соответственно.
. КА = r, MB = 2r.
Проведем прямую КТ, параллельную АВ,
.
Из прямоугольного треугольника КТМ, где
КМ = КС + СМ = r + 2r = 3r
МТ = МВ - ТВ = 2r - r = r
.
Значит, АВ = КТ =
.
Из треугольника КТМ
Из треугольника СМВ, где СМ = МВ = 2r, по теореме косинусов






И если я правильно расшифровала вашу текстовую запись, что
, то
Проведем прямую КТ, параллельную АВ,
Из прямоугольного треугольника КТМ, где
КМ = КС + СМ = r + 2r = 3r
МТ = МВ - ТВ = 2r - r = r
Значит, АВ = КТ =
Из треугольника КТМ
Из треугольника СМВ, где СМ = МВ = 2r, по теореме косинусов
И если я правильно расшифровала вашу текстовую запись, что


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili