Вопрос задан 27.12.2018 в 02:59. Предмет Геометрия. Спрашивает Подолей Каріна.

Диагональ AC равнобедренной трапеции ABCD делит угол bad пополам, угол ABC равен 120 градусов,

основания трапеции AD=10см BC=4см. докажите что треугольник ACD прямоугольный.найдите периметр этой трапеции. Если что, на фотографии, вариант второй, задание 4.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рапар Альберт.
Рассмотрим треугольник ACD: угол д = 60 градусов.В р.б. трапеции углы при каждом основании равны, следовательно угол а = 60 градусов. угол CAD=60/2=30, значит угол ACD равен 90 градусов. по свойству прямоуг. треугольника, напротив угла в 30 градусов лежит половина гипотенузы, значит CD=6 см. Так как AB=CD, АВ=6см. По сумме углов выпуклого четырёхугольника 360-(уголА+уголD)=угоол В+ угол С = 360-120=240. Значит угол В 120градусов и С тоже. Рассмотрим треугольник АВС: угол ВАС равен 30гр. угол В равен 120 гр. Угол АСВ равен уголС-угол ACD =30гр. Так как углы при основании равны треугольник АВС равнобедренный. Следовательно ВС равно 6 см. Найдём периметр трапеции: Ab+ BC+ CD+ AD=6+6+6+12=30cм.ОТВЕТ:30 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос