
Вопрос задан 02.04.2018 в 10:05.
Предмет Геометрия.
Спрашивает Варданян Женя.
На рисунке точка O-центр окружности, AO=AB, OC=CD. Докажите, что треугольник AOB=COD



Ответы на вопрос

Отвечает Быков Виктор.
В тр-ке АОВ ОA=ОВ=r
значит, тр-ник АОВ – равносторонний, тогда угол О = 60°
в тр-ке СОD ОC=ОD=r
значит, тр-ник CОD – равносторонний, тогда угол О = 60°
Δ AOB= Δ COD ( по 2 стор. и углу м/у ними), т.к.
1) ОА=ОС (как радиусы)
2) ОВ=ОD (как радиусы)
3) ∠AOB = ∠ COD = 60° Чтд.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili