
Вопрос задан 15.12.2018 в 08:52.
Предмет Геометрия.
Спрашивает Никулина Дарья.
в прямоугольном треугольнике ABC угол B = L (альфа) AC=a. Через вершину прямого угла проведен к
плоскости перпендикуляр равный a. Найдите расстояние от его концов до гипотенузы

Ответы на вопрос

Отвечает Ворон Кирилл.
сделаем построение по условию
перпендикуляр к плоскости - это отрезок DC=a
<C=90 ; катет АС =а ; <B = <(альфа)
гипотенуза AB
DK ┴ AB
CK ┴ AB
DC ┴ CK
по теореме о трех перпендикулярах СK - это проекция DC
DK=b, CK=d -расстояние от концов отрезка DC до гипотенузы
так как прямые (СК)┴(АВ) ;(BС)┴(АC) взаимно перпендикулярные,то <KCA=<B=<альфа
∆KAC - прямоугольный
d = a*cos<альфа
∆KDC - прямоугольный
по теореме Пифагора
b = √ (d^2+a^2) =√((a*cos<альфа)^2+a^2) = a*√((cos<альфа)^2+1)
ответ
d = a*cos<альфа
b = a*√((cos<альфа)^2+1)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili