Вопрос задан 02.11.2018 в 01:35. Предмет Геометрия. Спрашивает Вековищева Лилия.

Хелп!!!23.23 Знайти сторону ромба ,якщо його діагоналі 6 і 8.23.24 Кути,утворені діагоналями робма

з його сторонами,відносяться як 2:7 .Знайти більший кут ромба.23.27 Знайти площу ромба із стороною a = 4,якщо радіус вписаного кола r = 1,5.23.30 Периметр паралелограма дорівнює 26.Чому дорівнює сума двох сусідніх його сторін??
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Топчиёва Ксения.
23.23)) диагонали ромба взаимно перпендикулярны, делятся точкой пересечения пополам и являются биссектрисами углов ромба...
получим прямоугольный треугольник с катетами 3 и 4, в котором сторона ромба будет гипотенузой и будет равна 5
23.24)) 2х + 7х = 90 градусов
х = 10 градусов
половина большего угла ромба = 70 градусов
больший угол ромба = 140 градусов
23.27)) при пересечении диагоналей ромба получается четыре равных прямоугольных треугольника...
радиус вписанной окружности, проведенный к стороне ромба, будет ей перпендикулярен, т.е. будет высотой прямоугольного треугольника, проведенной к гипотенузе...
Sромба = 4*Sпрямоугольн.треугольника = 4*(a*r/2) = 2*a*r = 4*3 = 12
23/30))) ну, а это уже стыдно не сделать...
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

23.23: Для знаходження сторони ромба, використаємо теорему Піфагора. За цією теоремою, сума квадратів довжин діагоналей дорівнює сумі квадратів довжин сторін ромба. Таким чином, отримуємо:

6^2 + 8^2 = a^2 + a^2 36 + 64 = 2a^2 100 = 2a^2 a^2 = 50 a ≈ 7.07

Отже, сторона ромба дорівнює приблизно 7.07.

23.24: Нехай більший і менший кути ромба дорівнюють 2x і 7x (відповідно). Згідно умови задачі, їхня відносна величина становить 2:7. Таким чином, отримуємо рівняння:

2x / 7x = 2 / 7

Отримуємо:

2 * 7x = 7 * 2x 14x = 14x

Звідси маємо, що величина кутів не визначена умовою задачі.

23.27: Площа ромба може бути знайдена за допомогою формули S = a^2 * sin(α), де a - сторона ромба, α - меньший кут між сторонами.

У цьому випадку, a = 4 і α - одна з діагоналей. Знаходимо α за допомогою формули косинусів:

cos(α) = (a^2 + a^2 - d^2) / (2a * a) cos(α) = (4^2 + 4^2 - 1.5^2) / (2 * 4 * 4) cos(α) = (16 + 16 - 2.25) / 32 cos(α) = 29.75 / 32 α ≈ arccos(0.927)

Тепер, ми можемо знайти площу ромба:

S = 4^2 * sin(arccos(0.927)) S ≈ 16 * 0.374 S ≈ 5.984

Отже, площа ромба дорівнює приблизно 5.984.

23.30: Нехай a і b - сторони паралелограма, а s - сума двох сусідніх його сторін. Тоді відомо, що периметр паралелограма дорівнює 26. За визначенням, периметр паралелограма є сумою всіх його сторін:

P = 2a + 2b = 26

Ми також знаємо, що сума двох сусідніх сторін дорівнює a + b. Отже:

s = a + b

Замінюючи це значення в рівнянні периметру, отримуємо:

2s = 26 s = 26 / 2 s = 13

Отже, сума двох сусідніх сторін паралелограма дорівнює 13.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос