Вопрос задан 13.10.2018 в 12:48. Предмет Геометрия. Спрашивает Котик Ксения.

ОЧЕНЬ СРОЧНО. БУДУ ОЧЕНЬ БЛАГОДАРНА. Из точки м проведен перпендикуляр мв, равный 4см, к плоскости

прямоугольника авсд. наклонные ма и мс образуют с плоскостью прямоугольника углы 45° и 30° соответственно. а) докажите что треугольники мад и мсд прямоугольные б) найдите стороны поямоугольника в) докажите что треугольник вдс является проекцией треугольника мдс на плоскость прямоугольника и найдите его площадь
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Илларионов Виталий.
1)по ТТП:МС-прямая, ВС-ее проекция, так как CD перпендикулярна ВС(прямоугольник ABCD), то МС перпендикулярна CD, то есть треугольник MCD прямоугольный. Точно так же второй треугольник 
2)AMB: tgA=MB/AB 
AB=4 cм=CD 
BMC: tgC=MB/BC 
(sqrt3)/3=4/BC 
BC=4/sqrt3 см=AD 
3)ВD-проекцияМD,ВС-проекция МС,значит, ВСD-проекция МСD 
S(BCD)=1/2*BC*CD=1/2*4/sqrt3*4=8/sqrt3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Task: Proving that triangles MAD and MSD are right-angled

To prove that triangles MAD and MSD are right-angled, we need to show that the angles at vertices A and D are right angles.

Let's start by analyzing triangle MAD. We know that the line segment MA is perpendicular to line segment MV, and the angle between MA and the plane of rectangle ABCD is 45°.

To prove that triangle MAD is right-angled, we need to show that angle MAD is a right angle. Since MA is perpendicular to MV, we can conclude that angle MAV is also a right angle.

Now, let's consider triangle MSD. We know that the line segment MS is perpendicular to line segment MV, and the angle between MS and the plane of rectangle ABCD is 30°.

To prove that triangle MSD is right-angled, we need to show that angle MSD is a right angle. Since MS is perpendicular to MV, we can conclude that angle MSV is also a right angle.

Therefore, we have shown that triangles MAD and MSD are right-angled.

Task: Finding the sides of the rectangle

To find the sides of the rectangle ABCD, we can use the information given in the problem.

We know that line segment MV is perpendicular to line segment MA and has a length of 4 cm. We also know that the angles between the inclined lines MA and MS and the plane of the rectangle are 45° and 30°, respectively.

Let's denote the length of line segment MA as x and the length of line segment MS as y.

Using trigonometric ratios, we can determine the lengths of the sides of the rectangle.

For triangle MAD: - The length of side AD is x. - The length of side AM is y.

For triangle MSD: - The length of side SD is y. - The length of side SM is x.

Therefore, the sides of the rectangle ABCD are as follows: - Side AD = x - Side AB = y - Side BC = x - Side CD = y

Task: Proving that triangle VDS is the projection of triangle MDS onto the plane of the rectangle

To prove that triangle VDS is the projection of triangle MDS onto the plane of the rectangle ABCD, we need to show that the corresponding angles of the two triangles are equal.

Let's denote the angles of triangle MDS as follows: - Angle MDS = α - Angle MSD = β - Angle DMS = γ

Now, let's consider triangle VDS. We know that line segment MV is perpendicular to line segment MS, and the angle between line segment MS and the plane of the rectangle ABCD is 30°.

Using the information given, we can conclude that: - Angle VDS = α - Angle DVS = β - Angle VSD = γ

Since the corresponding angles of triangle MDS and triangle VDS are equal, we can say that triangle VDS is the projection of triangle MDS onto the plane of the rectangle ABCD.

Task: Finding the area of triangle VDS

To find the area of triangle VDS, we can use the formula for the area of a triangle:

Area = (1/2) * base * height

In triangle VDS, the base is line segment DS and the height is the perpendicular distance from point V to line segment DS.

Since line segment MV is perpendicular to line segment MS, we can use the length of line segment MV (4 cm) as the height of triangle VDS.

The length of line segment DS is y, which we found earlier.

Therefore, the area of triangle VDS is:

Area = (1/2) * 4 cm * y cm = 2y cm²

Please note that the units used in this calculation are centimeters.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос