Вопрос задан 12.10.2018 в 00:29. Предмет Геометрия. Спрашивает Коновалова Марина.

абсд-параллелограм,бк-высота,ак=7см,кд=15см,угол а=45градусов ,найти площадь параллелограмма.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сионихина Вика.
Площадь равна половина сумме оснований умножен нон на высоту..
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения площади параллелограмма ABCD, нужно знать длину его основания и высоты, проведенной к нему. В данном случае, основанием является сторона АК, а высотой - отрезок БК. По формуле, площадь параллелограмма равна произведению основания на высоту:

S = a · h

где S - площадь параллелограмма, a - длина основания, h - длина высоты.

Длина основания АК равна 7 см по условию. Длину высоты БК можно найти, используя теорему Пифагора в прямоугольном треугольнике АБК:

BK^2 = AK^2 + AB^2

где BK - длина высоты, AK - длина основания, AB - длина стороны параллелограмма.

Длину стороны АБ можно выразить через длину стороны КД и угол А:

AB = KD · sin α

где KD - длина стороны параллелограмма, α - угол между сторонами АК и АБ.

Подставляя известные значения, получаем:

BK^2 = 7^2 + (15 · sin 45)^2

BK^2 = 49 + 112.5

BK^2 = 161.5

BK = √161.5

BK ≈ 12.71 см

Теперь, зная длину основания и высоты, можно найти площадь параллелограмма:

S = 7 · 12.71

S ≈ 88.97 см^2

Ответ: площадь параллелограмма ABCD примерно равна 88.97 см^2.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос