Вопрос задан 02.08.2018 в 22:16. Предмет Геометрия. Спрашивает Якушина Дарья.

По стороне основания a и высоте h найдите апофему правильной треугольной пирамиды

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Крюков Даниил.
BC=BD=CD⇒OH=a√3/6
AH=√AO²+OH²=√h²+a²/12

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Apothem of a Regular Triangular Pyramid

To find the apothem of a regular triangular pyramid, we need to know the length of the base side (a) and the height (h) of the pyramid.

The apothem (r) of a regular triangular pyramid is the distance from the center of the base to the midpoint of any of the triangular faces.

Unfortunately, the search results provided do not directly provide a formula or equation for finding the apothem of a regular triangular pyramid based on the side length and height. However, we can use our knowledge of geometry to derive the formula.

Let's break down the problem step by step:

1. First, let's consider the base of the pyramid, which is an equilateral triangle. An equilateral triangle has all sides equal in length.

2. The height of the pyramid (h) is the distance from the apex (top vertex) to the center of the base.

3. The apothem (r) is the distance from the center of the base to the midpoint of any of the triangular faces.

4. To find the apothem, we can draw a line from the apex to the midpoint of one of the sides of the base. This line will be perpendicular to the base.

5. This line divides the equilateral triangle into two right-angled triangles.

6. The length of the line from the apex to the midpoint of the base side is the apothem (r).

7. We can use the Pythagorean theorem to find the length of the apothem. The Pythagorean theorem states that in a right-angled triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

8. In our case, the hypotenuse is the apothem (r), one of the other sides is half the length of the base side (a/2), and the remaining side is the height (h) of the pyramid.

9. Using the Pythagorean theorem, we can write the equation as follows:

r^2 = (a/2)^2 + h^2

Solving for r, we get:

r = sqrt((a/2)^2 + h^2)

where sqrt denotes the square root.

Therefore, the formula for finding the apothem (r) of a regular triangular pyramid is:

r = sqrt((a/2)^2 + h^2)

Please note that this formula assumes the pyramid is regular, meaning all sides and angles are equal.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос