Вопрос задан 02.08.2018 в 17:03. Предмет Геометрия. Спрашивает Манкаш Данил.

Ребят помогите! Придумать и решить 5 задач на тему: правильные многоугольники.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рыжов Артем.

вот посмотри фотографии.....если что-то не так извини!!




0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Правильные многоугольники

Правильные многоугольники - это многоугольники, у которых все стороны и углы равны. В данной задаче, мы предлагаем решить пять задач на тему правильных многоугольников. Давайте рассмотрим каждую задачу по очереди.

Задача 1: Найдите периметр правильного треугольника со стороной длиной 5 см.

Решение: Правильный треугольник имеет все стороны равными. Таким образом, периметр треугольника равен сумме длин всех его сторон. В данном случае, у нас есть треугольник со стороной длиной 5 см. Поскольку все стороны равны, периметр будет равен 5 + 5 + 5 = 15 см.

Задача 2: Найдите площадь правильного пятиугольника со стороной длиной 2 см.

Решение: Правильный пятиугольник имеет все стороны равными. Чтобы найти площадь пятиугольника, мы можем использовать формулу площади правильного многоугольника: S = (n * s^2) / (4 * tan(π/n)), где n - количество сторон, s - длина стороны. В данном случае, у нас есть пятиугольник со стороной длиной 2 см. Подставляя значения в формулу, получаем: S = (5 * 2^2) / (4 * tan(π/5)) ≈ 6.88191 см^2.

Задача 3: Найдите сумму всех внутренних углов правильного шестиугольника.

Решение: Правильный шестиугольник имеет все углы равными. Чтобы найти сумму всех внутренних углов, мы можем использовать формулу: Сумма углов = (n - 2) * 180 градусов, где n - количество сторон. В данном случае, у нас есть шестиугольник, поэтому сумма углов будет равна (6 - 2) * 180 = 720 градусов.

Задача 4: Найдите длину стороны правильного семиугольника, если его периметр равен 35 см.

Решение: Правильный семиугольник имеет все стороны равными. Чтобы найти длину стороны, мы можем разделить периметр на количество сторон. В данном случае, у нас есть семиугольник с периметром 35 см. Разделив периметр на 7, получаем длину стороны: 35 / 7 = 5 см.

Задача 5: Найдите площадь правильного десятиугольника со стороной длиной 12 см.

Решение: Правильный десятиугольник имеет все стороны равными. Чтобы найти площадь десятиугольника, мы можем использовать формулу площади правильного многоугольника: S = (n * s^2) / (4 * tan(π/n)), где n - количество сторон, s - длина стороны. В данном случае, у нас есть десятиугольник со стороной длиной 12 см. Подставляя значения в формулу, получаем: S = (10 * 12^2) / (4 * tan(π/10)) ≈ 247.638 см^2.

Надеюсь, эти решения помогут вам в выполнении задач на тему правильных многоугольников. Если у вас возникнут еще вопросы, не стесняйтесь задавать их!

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос