Основание четырехугольной пирамиды `SABCD` – параллелограмм `ABCD`. На ребрах `SB` и `SD`
соответственно взяты точки `M` и `P` так, что `BS=3BM`, `SD=3SP`. Через эти точки проведена плоскость, параллельная `AC`. Постройте сечение пирамиды этой плоскостью и определите в каком отношении оно делит ребро `SC`.Ответы на вопрос
Ответ:
Плоскость проходящая через точки M и P и паралелльная AC делит ребро SC в отношении 5 к 4 считая от точки C.
Объяснение:
Дано: SABCD - четырехугольная пирамида,M ∈ SB, P ∈ SD, BS = 3BM, SD = 3SP, ABCD - параллелограмм (в основании пирамиды SABCD)
Построить: сечение паралелльно AC и проходящие через точки P,M
Найти: CF : FS - ?
План построения:
Рассмотрим плоскость ABC. Проведем диагонали в параллелограмме ABCD (по условию), пусть AC ∩ BD = O.
По построению:
- O ∈ BD, a BD ⊂ ABC, то O ∈ ABC
По аксиоме стереометрии (аксиома прямой и плоскости) прямая, проходящая через две точки плоскости, лежит в этой плоскости, тогда:
- Так как M,P ∈ SBD, то MP ⊂ SBD
- Так как O,S ∈ SBD, то OS ⊂ SBD
По аксиоме стереометрии (аксиома пересечения плоскостей) если две плоскости имеют общую точку то их пересечение есть прямая,
тогда по следствию из данной аксиомы:
- Так как O ∈ SBD,ASC и S ∈ SBD,ASC ,то SBD ∩ ASC = SO
Так как MP,SO ⊂ ABC и MP ∦ SO, то (MP ∩ SO) ∈ SBD.
Пусть MP ∩ SO = K.
Так как K ∈ SO и SBD ∩ ASC = SO, то K ∈ SAC.
Через точку K проведем прямую параллельную AC и пусть данная прямая пересекает AS и CS в точках T и F соотвественно, то есть по построению TF║AC.
Так как K ∈ TF и K ∈ MP, то есть TF ∩ MP = K, тогда по опредлению пересекающихся TF и MP - пересекающиеся прямые.
По следствию из аксиом стереометрии плоскость однозначно задается пересекающимеся прямыми, тогда так как TF и MP - пересекающиеся прямые, то данные прямые однозначно задают плоскость MPF, то есть точки T,F,M,P принадлежат одной плоскости.
По теореме (признак параллельности прямой и плоскости) если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то эти прямая и плоскость параллельны, тогда так как по построению TF║AC, то TF║ABC.
Так как TF ⊂ MPF и M,P ∈ MPF. Таким образом сечением пирамиды SABCD плоскость MPF есть четырехугольник TPFM.
Решение:
Проведем прямую BD. Так как BD ⊂ SBD и MP ⊂ SBD, то BD ∩ MP.
Пусть BD ∩ MP = Q, BM = y, SP = x.
По условию:
- BS = 3BM = 3y
- SD = 3SP = 3x
По основному свойству отрезка:
SD = PS + PD ⇒ PD = SD - PS = 3x - x = 2x.
BS = MB + MS ⇒ MS = BS - MB = 3y - y = 2y.
Рассмотрим треугольник ΔSBD.
По теореме Менелая:
Введем коэффициент пропорциональности , тогда
.
По основному свойству отрезка:
.
Рассмотрим паралеллограмм ABCD. По свойствам паралеллограмма его диагонали точкой персечения делятся пополам, тогда.
По основному свойству отрезка:
Рассмотрим треугольник ΔSOB.
По теореме Менелая:
Рассмотрим треугольник ΔSOC.
По теореме о пропорциональных отрезках:





Для решения данной задачи давайте рассмотрим особенности данной пирамиды и используем данные об отношениях длин сторон.
Поскольку основание четырехугольной пирамиды - параллелограмм ABCD, то стороны параллелограмма можно обозначить как AB, BC, CD и DA. Обозначим вершину пирамиды как S. Тогда, ребра пирамиды будут SA, SB, SC и SD.
Из условия задачи известно, что BS = 3BM и SD = 3SP. Обозначим точку пересечения плоскости, проходящей через M и P и параллельной AC, как O. Тогда, точки M, O и P лежат на одной прямой.
Теперь рассмотрим треугольники BMS и DPS. Учитывая, что BS = 3BM и SD = 3SP, можно сказать, что отношение длин соответствующих сторон в этих треугольниках также равно 3:1. То есть:
\[ \frac{BS}{BM} = \frac{SD}{SP} = 3:1 \]
Теперь рассмотрим параллелограмм ABCD. Так как M и P лежат на сторонах параллелограмма, то линия, соединяющая M и P, параллельна диагоналям параллелограмма.
Таким образом, плоскость, проходящая через M и P и параллельная AC, будет параллельна базе ABCD. Поскольку она также проходит через вершину S, то это сечение будет параллельным основанию ABCD.
Теперь мы можем определить отношение, в котором данная плоскость делит ребро SC. Поскольку треугольники BMS и DPS подобны, то соответствующие отношения равны:
\[ \frac{SO}{SC} = \frac{BM}{BS} = \frac{1}{3} \]
Таким образом, плоскость делит ребро SC в отношении 1:3.
Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
