Один з кутів трикутника дорівнює 70ᵒ, а другий на 16ᵒ більший за третій. Знайдіть невідомі кути
трикутникаОтветы на вопрос
Ответ:
47° 63°
Объяснение:
Нехай ∠3=х°, ∠2=х+16, ∠1=70°.
х+х+16+70=180
2х=94; х=47
∠2=47+16=63°; ∠3=47°
Позначимо невідомі кути трикутника як x, y та z.
За умовою задачі, один з кутів трикутника дорівнює 70°. Тому ми маємо:
x + y + z = 180° (сума кутів трикутника)
Також в умові сказано, що другий кут на 16° більший за третій. Це можна записати у вигляді рівняння:
y = z + 16°
Замінимо це рівняння у перше:
x + (z + 16°) + z = 180°
Скоротимо його:
2z + 16° + x = 180°
Також ми знаємо, що один з кутів трикутника дорівнює 70°:
x = 70°
Підставимо це значення у попереднє рівняння:
2z + 16° + 70° = 180°
Скоротимо його:
2z + 86° = 180°
Віднімемо 86° від обох сторін:
2z = 94°
Розділимо обидві сторони на 2:
z = 47°
Тепер підставимо значення z у друге рівняння:
y = z + 16° = 47° + 16° = 63°
Отже, отримали, що z = 47°, y = 63° і x = 70°.
Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
