
Задай вопрос найдите площадь прямоугольника сторона которого равна 5 а диагональ равна 13


Ответы на вопрос

Ответ:
Объяснение:
- вторая сторона.
,
, но т.к.
,
. Площадь



Для нахождения площади прямоугольника, у которого одна сторона равна 5, а диагональ равна 13, мы можем использовать теорему Пифагора. Для этого нужно разбить прямоугольник на два прямоугольных треугольника, где диагональ будет гипотенузой, а две стороны прямоугольника будут его катетами. Затем мы найдем длины этих катетов и применим теорему Пифагора.
Давайте обозначим одну сторону прямоугольника как a, другую как b, а диагональ как c. Мы знаем, что a = 5 и c = 13. Теперь мы можем использовать теорему Пифагора:
c^2 = a^2 + b^2
13^2 = 5^2 + b^2
169 = 25 + b^2
Теперь выразим b^2:
b^2 = 169 - 25 b^2 = 144
Чтобы найти b, извлечем квадратный корень обеих сторон:
b = √144 b = 12
Теперь у нас есть значения a и b, и мы можем найти площадь прямоугольника, используя формулу:
Площадь = a * b
Площадь = 5 * 12 Площадь = 60
Площадь прямоугольника с одной стороной, равной 5, и диагональю, равной 13, составляет 60 квадратных единиц (например, 60 квадратных сантиметров, если размеры заданы в сантиметрах).


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili