Вопрос задан 25.10.2023 в 08:01. Предмет Геометрия. Спрашивает Негеков Миша.

Знайдіть значення у, при якому вектори a̅ (- 6; 2) і ̅b (9; у) є колінеарними Варианты: a. -3 b.

2,7 c. -2,7 d. 3
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сургутская Кристина.

Ответ:а.-3

Объяснение:векторы коллинеарны,если их координаты  соответственно пропорциональны,т.е. -6/9=2/у, значит у=- 18/6= -3.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Два вектори a̅ (-6; 2) і b̅ (9; у) є колінеарними, якщо вони кратні один одному. Це означає, що вектор b̅ може бути представлений як добуток числа на вектор a̅. Математично це виглядає так:

b̅ = k * a̅,

де k - це число, на яке ми множимо вектор a̅, щоб отримати вектор b̅.

Тепер ми можемо вирішити це рівняння:

(9; у) = k * (-6; 2).

Це означає, що:

9 = -6k, у = 2k.

З першого рівняння ми знаходимо k:

-6k = 9, k = -9/6, k = -3/2.

Тепер ми можемо знайти у, підставивши це значення k у друге рівняння:

у = 2k, у = 2 * (-3/2), у = -3.

Отже, значення у, при якому вектори a̅ (-6; 2) і b̅ (9; у) є колінеарними, дорівнює -3.

Правильна відповідь: a. -3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос