Вопрос задан 24.10.2023 в 16:40. Предмет Геометрия. Спрашивает Печерица Людмила.

Дано: трикутник ABC, АВ =2√3, кут А =60°,кут С = 30° .Знайти BC​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Seikimbaeva Asel.

ответ прилагается в файле


0 0
Отвечает Какимов Нурдаулет.

Ответ:

6

Объяснение:

По теореме о сумме углов треугольника угол B = 180 - 60 - 30 = 90, поэтому этот треугольник - прямоугольный.

cos C = cos 30 = BC/AC

sin C = sin 30 = AB/AC, AC = AB/sin 30 = 4√3.

BC = cos 30 * AC = √3/2 * 4√3 = 12/2 = 6.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження сторони BC трикутника ABC, спочатку розглянемо геометричну ситуацію.

Знаючи, що кут А = 60° і кут С = 30°, ми можемо побачити, що трикутник ABC є рівностороннім трикутником, оскільки кожний кут в ньому дорівнює 60°, і всі сторони рівні.

Отже, сторона BC трикутника ABC дорівнює стороні AB, ізвестній як 2√3. Таким чином, BC = 2√3.

Отже, сторона BC трикутника ABC дорівнює 2√3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос