Вопрос задан 09.10.2023 в 05:32. Предмет Геометрия. Спрашивает Карих Полина.

Дам 20 баллов. В треугольнике АВС угол С=60 градусом, Угол В=90 градусам. Высота ВВ1=2 см.

Найдите АВ.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает DELETED.
Дано: треугольник ABC, угол C=60°, угол B=90°, BB1-высота=2 см.
Найти : АВ
Решение : По условию угол С=60°, угол В=90°, значит угол А=180°-(60°+90°)=30°. Рассмотрим треугольник АВВ1. Он прямоугольный (угол ВВ1=90°), т.к ВВ1 высота. В прямоугольном треугольнике катет, лежащий против угла в 30° равен половине гипотенузы, следовательно АВ = 2*ВВ1= 4 (см)


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи воспользуемся тригонометрическими функциями.

Поскольку у нас известен угол С (60 градусов) и угол В (90 градусов), мы можем использовать тангенс угла С:

tan(С)=противоположный катетприлежащий катет\tan(С) = \frac{{\text{{противоположный катет}}}}{{\text{{прилежащий катет}}}}

Здесь противоположний катет - это высота VV1VV1, а прилежащий катет - это ABAB. Подставим известные значения и решим уравнение:

tan(60)=2смAB\tan(60^\circ) = \frac{2 \, \text{{см}}}{AB}

Рассчитаем тангенс 60 градусов:

tan(60)=3\tan(60^\circ) = \sqrt{3}

Теперь решим уравнение относительно ABAB:

3=2смAB\sqrt{3} = \frac{2 \, \text{{см}}}{AB}

Умножим обе стороны на ABAB и разделим на 3\sqrt{3}:

AB=2см3AB = \frac{2 \, \text{{см}}}{\sqrt{3}}

Аппроксимируя значение, получим:

AB231.155смAB \approx \frac{2}{\sqrt{3}} \approx 1.155 \, \text{{см}}

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос