Вопрос задан 27.09.2023 в 07:16. Предмет Геометрия. Спрашивает Нуриев Эмиль.

В параллелограмме ABCD диагонали пересекаются в точке О. Запишите все векторы, имеющие началами и

концами вершины параллелограмма и точку пересечения диагоналей. Какие из них коллинеарны векторам AB, BC и ВО ?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Галушка Никита.

Ответ:

DС+CD=А-B.BO+OC=B.BO-OC=-В.BA-DА=B-А

Объяснение:

Надеюсь помогла ^• •^

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, давайте обозначим вершины параллелограмма следующим образом:

A - вершина A B - вершина B C - вершина C D - вершина D O - точка пересечения диагоналей

Теперь давайте запишем все векторы, имеющие началами и концами вершины параллелограмма и точку пересечения диагоналей:

  1. Вектор OA - начинается в точке O и заканчивается в точке A.
  2. Вектор OB - начинается в точке O и заканчивается в точке B.
  3. Вектор OC - начинается в точке O и заканчивается в точке C.
  4. Вектор OD - начинается в точке O и заканчивается в точке D.
  5. Вектор AB - начинается в точке A и заканчивается в точке B.
  6. Вектор BC - начинается в точке B и заканчивается в точке C.

Теперь давайте определим, какие из этих векторов коллинеарны векторам AB, BC и BO.

Коллинеарность означает, что векторы лежат на одной прямой или параллельны друг другу. Таким образом:

  1. Вектор AB и вектор OA коллинеарны, так как они лежат на одной прямой AO.
  2. Вектор BC и вектор OB коллинеарны, так как они лежат на одной прямой BO.
  3. Вектор BO и вектор OC коллинеарны, так как они лежат на одной прямой BO.
  4. Вектор BO и вектор OD коллинеарны, так как они лежат на одной прямой BO.

Таким образом, вектора AB, BC и BO коллинеарны векторам, соединяющим точку O с вершинами параллелограмма, так как они лежат на одной прямой.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос