Вопрос задан 21.07.2018 в 01:36. Предмет Геометрия. Спрашивает Ивлева Вика.

Окружность проходящая через вершины А и В треугольника ABC пересекает стороны АС и ВС в точках Л и

К соответственно доказать что треугольники ABC и СКЛ подобны.С рисунком плиииз
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ивашко Дарья.

Соединив К и Л, получим вписанный четырехугольник АВКЛ. Четырехугольник может быть вписанным в окружность тогда и только тогда, когда сумма его противоположных углов равна 180º.
Угол ВАЛ+угол ВКЛ=180º
/Угол СКЛ+ угол ВКЛ=180º
Если сумма и одно из слагаемых одного выражения равны сумме и одно из слагаемых второго выражения, то вторые слагаемые тоже равны. ⇒
Угол ВАЛ=углу СКЛ.
 В треугольниках АВС и КСЛ угол С - общий, равенство второго угла мы доказали. 
Первый признак подобия треугольников:
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. Ч.т.д.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос