
Вопрос задан 23.09.2023 в 07:46.
Предмет Геометрия.
Спрашивает Свержевская Полина.
Обчислити значення sina, якщо Cosa = 3/5, 0<a<90° пожалуйста с фото и ответ с решением


Ответы на вопрос

Отвечает Демченко Дина.
Ответ:
Объяснение:cos^2 a = √1-sin^2a = √ 1 - 9/25 =√ 25/25-9/25 =√16/25 = 4/5



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для обчислення значення синуса a, яке позначається як sin(a), ми можемо скористатися тригонометричною ідентичністю:
sin^2(a) + cos^2(a) = 1
Дано cos(a) = 3/5. Ми хочемо знайти sin(a).
Спочатку знайдемо sin^2(a):
sin^2(a) = 1 - cos^2(a) sin^2(a) = 1 - (3/5)^2 sin^2(a) = 1 - 9/25 sin^2(a) = 25/25 - 9/25 sin^2(a) = 16/25
Тепер ми можемо знайти sin(a), взявши квадратний корінь обох сторін:
sin(a) = √(16/25) sin(a) = √(16)/√(25) sin(a) = 4/5
Отже, sin(a) = 4/5 для 0° < a < 90°.
На жаль, я не можу надати фото, але надіюся, що ця відповідь була корисною.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili