 
20B008. Довжина бічної сторони рівнобедреного трикутника дорівнює 13, а довжина основи 24.
Обчислити радіус кола, описаного навколо цього трикутника. 0
        0
         0
        0
    Ответы на вопрос
 
        Відповідь:
Дано:
∆ABC- рівнобедрений
АВ=ВС=13см,АС=24см
Знайти: радіус кола, описаного навколо ∆ABC ?
Рішення:
Проведемо перпендікуляр с вершини кута В до основи АС ,тоді АН=НС,а ВН- висота і медіана
АН=АС/2=24/2=12см
Розглянемо ∆АВН- прямокутний.
За теоремою Піфагора
ВН=√(АВ²-АН²)=√(13² - 12²)=√ 169 -144=√25 =5см.
S(∆ABC)=1/2*BH*AC=1/2*5*24=1/2*120=60см²
Rкола=(AB*BC*AC)/(4*S(∆ABC))=(13*13*24)/(4*60)=4056/240=16,9 см
Відповідь:радіус кола,описаного навколо ∆ABC дорівнює 16,см
Пояснення:

 0
                    0
                     0
                    0
                 
            Для обчислення радіуса кола, описаного навколо рівнобедреного трикутника, ми можемо скористатися формулою для радіуса описаного кола, яка виглядає так:
де:
- - радіус описаного кола,
- - довжина бічної сторони трикутника, або, в цьому випадку, 13,
- - міра кута при основі трикутника.
Рівнобедрений трикутник має дві однакові бічні сторони і однакові кути при основі. Також, сума мір всіх кутів в трикутнику дорівнює 180 градусів. Оскільки ми знаємо довжину основи трикутника, ми можемо обчислити міру кута при основі за допомогою тригонометричних функцій.
Спочатку знайдемо міру одного з кутів при основі. Оскільки у нас рівнобедрений трикутник, то кожен з цих кутів буде дорівнювати:
Тепер ми можемо використовувати тригонометричну функцію тангенс для обчислення :
Тепер знайдемо :
Тепер, знаючи , ми можемо обчислити синус цього кута:
Отже, тепер ми можемо обчислити радіус описаного кола:
Підставимо значення:
Тепер за допомогою обчислень знайдемо радіус:
Виконавши обчислення, ми отримаємо значення радіуса .
 0
                    0
                     0
                    0
                Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			