
Вопрос задан 20.07.2018 в 08:07.
Предмет Геометрия.
Спрашивает Ермишкин Женя.
Помогите решить ! На рисунке N - середина отрезков PK и MT . Докажите что прямые PT и MK
параллельны.


Ответы на вопрос

Отвечает Мосина Юля.
Дано: д-во:
PK, MT=N ΔPNT=ΔMNK( по первому признаку равенства Δ)
__________ 1) РN= NK( т.к. N - середина.)
Д-ть,- что 2) TN= NM( т.к. N- середина.)
PT ║ MT 3) ∠PNT=∠KNM( как вертикальные)⇒
⇒∠TPN=∠NKM- потому что их треугольники равны)
( по признаку параллельности прямых, если внутренние накрест лежащие углы равны, то прямые параллельны)⇒
∠TPN=∠NKM ( как внутренние накрест лежащие)⇒PT║MT
ч.т.д..


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili