Вопрос задан 18.07.2018 в 09:54. Предмет Геометрия. Спрашивает Абрамова Мария.

В окружности с центром О проведены две равные хорды КЛ и МН. На хорды опущены перпендикуляры ОН и

ОС. Доказать, что ОН и ОС равны.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жанбырбек Шугыла.

Треугольник КОЛ = треугольнику МОN (по трём сторонам) - равнобедренные, высоты являются медианами, следовательно КН=СМ как половины равных сторон.

Треугольник КОН = треугольнику СОМ (по гипотенузе и катету), значит ОН=ОС.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос