
Доказать тождество 1+сtg^2a=1/sin^2a


Ответы на вопрос





Для доказательства данного тождества, начнем с левой стороны:
Левая сторона: 1 + ctg^2(a)
Поскольку ctg(a) равно 1/tan(a), то ctg^2(a) будет равно (1/tan(a))^2, что можно переписать как 1/tan^2(a).
Теперь левая сторона примет вид: 1 + 1/tan^2(a).
Теперь вспомним тождество для тангенса и секанса: tan^2(a) + 1 = sec^2(a).
Перепишем левую сторону с использованием этого тождества: 1 + 1/tan^2(a) = 1 + tan^2(a) / tan^2(a) = 1 + (tan^2(a) + 1) / tan^2(a).
Упростим дальше: 1 + (tan^2(a) + 1) / tan^2(a) = 1 + (sec^2(a)) / tan^2(a).
Теперь вспомним еще одно тождество: sec^2(a) = 1/cos^2(a).
Подставим это в выражение: 1 + (sec^2(a)) / tan^2(a) = 1 + (1/cos^2(a)) / tan^2(a).
Далее, вспомним определение тангенса: tan(a) = sin(a) / cos(a).
Теперь выразим cos^2(a) из этого определения: cos^2(a) = 1 - sin^2(a).
Подставим это обратно в наше выражение: 1 + (1/(1-sin^2(a))) / tan^2(a).
Теперь, заменим tan(a) на sin(a) / cos(a) в знаменателе: 1 + (1/(1-sin^2(a))) / (sin^2(a) / cos^2(a)).
Упростим дальше: 1 + (1/(1-sin^2(a))) * (cos^2(a) / sin^2(a)).
Теперь, заметим, что (1 - sin^2(a)) это теорема Пифагора для синуса и косинуса, которая равна cos^2(a).
Продолжим упрощение: 1 + (cos^2(a) / sin^2(a)) * (cos^2(a) / sin^2(a)).
Теперь перемножим: 1 + cos^4(a) / sin^4(a).
Итак, левая сторона равна: 1 + cos^4(a) / sin^4(a).
Теперь перейдем к правой стороне тождества: 1 / sin^2(a).
Теперь выразим sin^4(a) из этого выражения: sin^4(a) = (sin^2(a))^2.
Подставим это обратно в правую сторону: 1 / sin^2(a) = 1 / (sin^2(a))^2.
Итак, правая сторона равна: 1 / (sin^2(a))^2.
Теперь мы видим, что левая и правая стороны совпадают:
1 + cos^4(a) / sin^4(a) = 1 / (sin^2(a))^2.
Таким образом, тождество 1 + ctg^2(a) = 1 / sin^2(a) доказано.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili