
Дам 40 баллов В равнобедреном треугольнике один из углов равен 120, основание равно 15см. Найти
боковую сторону этого треугольника и радиус описанной окружности

Ответы на вопрос

..................... ..... ........




Чтобы решить задачу, давайте обозначим боковую сторону равнобедренного треугольника как "a", а радиус описанной окружности как "R".
Известно, что у равнобедренного треугольника один из углов равен 120 градусов. Так как сумма углов треугольника равна 180 градусов, то два других угла равны:
Угол1 + Угол2 = 180 - 120 = 60 градусов
В равнобедренном треугольнике два угла равны между собой (это углы при основании). Значит, каждый из них равен:
Угол1 = Угол2 = 60 / 2 = 30 градусов
Теперь, используем закон синусов для нахождения боковой стороны "a" в треугольнике:
a / sin(Угол1) = основание / sin(Угол2)
a / sin(30) = 15 / sin(60)
a / (1/2) = 15 / (√3 / 2)
a = 15 * 2 / √3
a = 30 / √3
Теперь найдем радиус описанной окружности "R" в треугольнике. Для этого воспользуемся формулой радиуса описанной окружности в треугольнике:
R = a / (2 * sin(Угол1))
R = (30 / √3) / (2 * sin(30))
R = (30 / √3) / (2 * 1/2)
R = (30 / √3) / 1
R = 30 / √3
Для удобства, можно умножить на √3 верхнюю и нижнюю часть радиуса, чтобы избавиться от знаменателя с корнем:
R = (30 * √3) / (3)
R = 10 * √3
Таким образом, боковая сторона треугольника равна 30 / √3 см, а радиус описанной окружности составляет 10 * √3 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili