Вопрос задан 16.07.2018 в 20:44. Предмет Геометрия. Спрашивает Фролов Никита.

В треугольнике ABC вписанная окружность касается стороны AB в точке K. Другая окружность касается

продолжений сторон АС, ВС и касается стороны АВ в точке L. Докажите, что AL=BK.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Персидская Ульяна.

Вторая окружность называется вневписанной. У каждого треугольника есть одна вписанная и три вневписанных окружности.
Понадобится еще несколько точек. 
M - точка касания AC с вписанной окружностью.
N - точка касания BC с вписанной окружностью.
D - точка касания AC с вневписанной окружностью. 
E - точка касания BC с вневписанной окружностью.
L - точка касания AB с вписанной окружностью.
Само доказательство совсем простое и короткое.
MD = MA + AL = AK + AL = 2*AL + KL;
NE = NB + BL = BK + BL = 2*BK + KL; 
очевидно, что MD = NE; (ну, CD = MD + CM; CE = NE + CN; и CD = CE; CM = CN;)
откуда сразу следует AL = BK; чтд.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос