Найдите высоту равнобедренного треугольника проведенную к его основанию если Боковая сторона равна
15 а основание 24.Ответы на вопрос
        Ответ:
Т. К. Треугольник равнобедренный, следовательно высота делит основание пополам. Допустим, что основание - АС, боковые стороны--АВ и ВС. Рассмотрим треугольник ВНА. Угол Н=90°, следовательно
ВН=
Высота равна 9
            Для решения этой задачи можно воспользоваться теоремой Пифагора.
В равнобедренном треугольнике боковые стороны равны, а основание является биссектрисой, которая делит треугольник на два прямоугольных треугольника.
Пусть высота треугольника, проведенная к основанию, равна h. Тогда каждый из прямоугольных треугольников будет иметь катеты h и 12 (половина основания).
Применяя теорему Пифагора к одному из этих треугольников, мы можем записать:
h^2 + 12^2 = 15^2
Раскроем скобки:
h^2 + 144 = 225
Перенесем 144 на другую сторону:
h^2 = 225 - 144
h^2 = 81
Извлекая квадратный корень, получим:
h = √81
h = 9
Таким образом, высота равнобедренного треугольника, проведенная к его основанию, равна 9.
Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			