Вопрос задан 09.07.2023 в 23:06. Предмет Геометрия. Спрашивает Лукашова Ира.

Один из острых углов прямоугольного треугольника равен 60°, а сумма короткого катета и гипотенузы

равна 30 см. Определи длину короткого катета. 1. Величина второго острого угла равна 2. Длина короткого катета равна CM.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сейдалиева Даша.

Пусть рассматриваемый треугольник ΔABC c прямым углом ∠BAC и углом ∠ABC равным 60°.

Тогда ∠BCA = 180°-∠BAC-∠ABC = 180° - 90°- 60° = 30°

Достроим ΔABC до равностороннего треугольника ΔBCD.

Тогда, так как сумма AB+BC=30см, то периметр ΔBCD= 30+30 = 60см

Так как ΔBCD равносторонний, то каждая его сторона равна

DB=BC=CD= 60:3 = 20см

Тогда сторона AB = BD:2 = 20:2 = 10см

Ответ:

Величина второго острого угла равна ∠BCA = 30°

Длина короткого катета равна AB = 10см.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть у нас есть прямоугольный треугольник ABC, где угол B равен 60°, а сумма короткого катета (пусть это будет AC) и гипотенузы (пусть это будет BC) равна 30 см.

Известно, что в прямоугольном треугольнике сумма длин двух коротких катетов равна длине гипотенузы по теореме Пифагора:

AC + BC = AB

Так как угол B равен 60°, мы можем воспользоваться свойствами треугольника. Если длина гипотенузы равна BC, то длина другого катета (AC) равна:

AC = BC * tan(60°)

Теперь у нас есть два уравнения:

  1. AC + BC = 30
  2. AC = BC * tan(60°)

Подставляя второе уравнение в первое:

BC * tan(60°) + BC = 30

Теперь решим уравнение относительно BC:

BC * (tan(60°) + 1) = 30 BC = 30 / (tan(60°) + 1)

Так как значение тангенса 60° равно √3, подставим это значение:

BC = 30 / (√3 + 1) BC ≈ 30 / (1.732 + 1) BC ≈ 30 / 2.732 BC ≈ 10.99 см

Теперь мы знаем длину гипотенузы BC, а длину короткого катета AC можем найти, умножив BC на тангенс 60°:

AC = BC * tan(60°) AC ≈ 10.99 * √3 AC ≈ 18.99 см

Итак, длина короткого катета AC примерно равна 18.99 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос