
Диагонали ромба равны 40дм и 30дм найдите сторону а)20дм б)22дм в)26 г)25дм пожалуйста помогите


Ответы на вопрос

Пусть ВН = 40 дм и АС = 30 дм. Диагонали ромба точкой пересечения делятся попалам и взаимно перпендикулярны, поэтому, ВО = 40 дм:2 = 20 дм, АО = 30 дм:2 = 15 дм. Рассмотрим прямоугольный треугольник АВО. По теореме Пифагора ВО^2+АО^2 = АВ^2 ; 400+225 = 625 ; АС^2 = 625 ; АС = √625 = 25.
Ответ : 25 дм.




Диагонали ромба делят его на четыре равных треугольника. Поскольку диагонали измеряют 40 дм и 30 дм, мы можем использовать теорему Пифагора для нахождения длин сторон ромба.
Пусть и - половины длин диагоналей, а - сторона ромба.
Тогда для первого случая: дм дм
Используем теорему Пифагора для одного из треугольников:
дм
Для второго случая ( дм, дм):
дм
Таким образом, вне зависимости от выбранной стороны, длина стороны ромба составляет 25 дм.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili