
В опуклому многокутнику 27 діагоналей знайдіть кількість його сторін і суму кутів


Ответы на вопрос

Ответ:
9 сторін,1260 суму кутів
Объяснение:
Формула для вычисления числа диагоналей многоугольника: d = n(n-3)/2, где d – число диагоналей, n – число сторон многоугольника, значит
n(n-3)/2=27
n(n-3)=54
n=9
сумма углов n-угольника равна 180°(n − 2), значит
180°(9 − 2)=1260



Для розв'язання цієї задачі ми можемо скористатися загальною формулою для знаходження кількості діагоналей в опуклому многокутнику, яка виглядає так:
де - кількість діагоналей, а - кількість вершин (сторін + діагоналей) многокутника.
За умовою маємо 27 діагоналей. Підставивши це значення в формулу, отримаємо:
Розв'язавши це рівняння відносно , отримаємо два можливих значення : -9 і 30. Очевидно, що кількість вершин не може бути від'ємною, тому правильна відповідь - 30 вершин.
Тепер давайте знайдемо кількість сторін многокутника. Кількість сторін дорівнює кількості вершин мінус 1 (так як усі вершини в опуклому многокутнику з'єднані сторонами і одна вершина може бути використана як початкова). Тобто, кількість сторін = 30 - 1 = 29 сторін.
Нарешті, для знаходження суми кутів многокутника використовуємо формулу:
де - сума кутів многокутника, а - кількість вершин.
Підставляючи в формулу, отримаємо:
Таким чином, у многокутнику 30 вершин, 29 сторін і сума його кутів дорівнює .


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili