Вопрос задан 05.07.2023 в 01:15. Предмет Геометрия. Спрашивает Дзержинская Валерия.

Стороны равны 2корня из 3 и 2. Найдите острый угол между диаго- налями прямоугольника.

прямоугольника
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Миклин Никита.

Ответ:

60

Объяснение:

Решение во вложении


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем воспользоваться тригонометрией. Пусть "a" и "b" - это стороны прямоугольника, где "a = 2√3" и "b = 2".

Зная стороны прямоугольника "a" и "b", мы можем найти его диагонали "d" с помощью теоремы Пифагора:

d² = a² + b²

Подставляя значения "a" и "b":

d² = (2√3)² + 2² d² = 12 + 4 d² = 16

d = 4

Теперь у нас есть длина диагонали "d". Чтобы найти острый угол между диагоналями прямоугольника, мы можем использовать тригонометрический закон косинусов:

cos(θ) = (a² + b² - d²) / 2ab

Подставляя значения "a", "b" и "d":

cos(θ) = ((2√3)² + 2² - 4²) / (2 * 2√3 * 2) cos(θ) = (12 + 4 - 16) / (4√3) cos(θ) = 0

Так как cos(θ) равен 0, это означает, что угол θ равен 90 градусов (π/2 радиан), то есть между диагоналями прямоугольника образуется прямой угол.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос