
Стороны треугольника равны 3 см, 4 см и 5 см. Найдите стороны подобного ему треугольника, если
коэффициент подобия равен: а) 2; б) 3; в) 0,5. Можно с решениеми дано

Ответы на вопрос

Ответ:
а) 6, 8 и 10 см. б) 9, 12 и 15 см. в) 1.5, 2 и 2.5 см
Объяснение:
Коэффициент подобия - это то, во сколько раз сторона одного треугольника будет отличатся от соответствующей стороны подобного ему треугольника. Если a - это сторона треугольника, k - коэффициент подобия, b - соответствующая сторона подобного прямоугольника, то b=k•a



Для нахождения сторон подобного треугольника, умножьте каждую сторону исходного треугольника на заданный коэффициент подобия. В данном случае, исходный треугольник имеет стороны 3 см, 4 см и 5 см. Давайте найдем стороны подобных треугольников для каждого из заданных коэффициентов:
а) Коэффициент подобия равен 2: Стороны нового треугольника будут равны 3 см * 2 = 6 см, 4 см * 2 = 8 см и 5 см * 2 = 10 см.
б) Коэффициент подобия равен 3: Стороны нового треугольника будут равны 3 см * 3 = 9 см, 4 см * 3 = 12 см и 5 см * 3 = 15 см.
в) Коэффициент подобия равен 0,5: Стороны нового треугольника будут равны 3 см * 0,5 = 1,5 см, 4 см * 0,5 = 2 см и 5 см * 0,5 = 2,5 см.
Таким образом, стороны подобных треугольников для заданных коэффициентов будут следующими: а) 6 см, 8 см, 10 см. б) 9 см, 12 см, 15 см. в) 1,5 см, 2 см, 2,5 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili