
Докажите, что если в треугольниках равны высоты, то отношение площадей этих треугольников равно
отношению их сторон, к которым проведены эти высоты.

Ответы на вопрос

Ответ:
Отношение площадей треугольников с равными элементами
Теорема
Если высоты двух треугольников равны, то их площади относятся, как основания.
Если основания двух треугольников равны, то их площади относятся, как высоты, проведенные к этим основаниям.
Если угол одного треугольника равен углу другого треугольника, то их площади относятся, как произведения сторон, заключающих равные углы.
Докажем первый пункт теоремы.
Рассмотрим треугольники △ABC△ABC и △A1B1C1△A1B1C1 в которых высоты BHBH и B1H1B1H1 равны.
Тогда SABCSA1B1C1=12BH⋅AC12B1H1⋅A1C1=ACA1C1



Для доказательства этого утверждения рассмотрим два треугольника: ABC и XYZ, где высоты AD и XE равны.
Мы хотим доказать, что отношение площадей треугольников ABC и XYZ равно отношению сторон этих треугольников, к которым проведены эти высоты, то есть:
Площадь(ABC) / Площадь(XYZ) = AB / XY
Для начала, давайте обратим внимание на следующие факты:
Высота AD перпендикулярна стороне AB треугольника ABC, а высота XE перпендикулярна стороне XY треугольника XYZ.
Высоты AD и XE равны по условию.
Длины этих высот обозначим как h.
Теперь давайте рассмотрим площади треугольников ABC и XYZ:
Площадь(ABC) = (1/2) * AB * h Площадь(XYZ) = (1/2) * XY * h
Теперь мы можем сформулировать отношение площадей:
(Площадь(ABC) / Площадь(XYZ)) = ((1/2) * AB * h) / ((1/2) * XY * h)
Заметим, что (1/2) и h сокращаются в числителе и знаменателе:
(Площадь(ABC) / Площадь(XYZ)) = (AB / XY)
Таким образом, мы доказали, что отношение площадей треугольников ABC и XYZ равно отношению сторон AB и XY.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili