
Как изменятся длина окружности и площадь , если радиус окружности уменьшается в 4 раза?


Ответы на вопрос

Длина окружности уменьшится в 4 раза, а площадь уменьшится в 16 раз.



Если радиус окружности уменьшается в 4 раза, то длина окружности и площадь также будут изменяться.
Длина окружности (L) рассчитывается по формуле: L = 2πr
Где: L - длина окружности, π (пи) - математическая константа, приближенно равная 3.14159, r - радиус окружности.
Если радиус уменьшается в 4 раза, то новый радиус (r') будет равен r/4. Тогда новая длина окружности (L') будет: L' = 2π(r/4) = (1/2)πr
Таким образом, длина окружности уменьшится в 2 раза.
Площадь окружности (A) рассчитывается по формуле: A = πr^2
Если радиус уменьшается в 4 раза, то новый радиус (r') будет равен r/4. Тогда новая площадь окружности (A') будет: A' = π((r/4)^2) = (1/16)πr^2
Таким образом, площадь окружности уменьшится в 16 раз.
Итак, при уменьшении радиуса окружности в 4 раза, длина окружности уменьшится в 2 раза, а площадь окружности уменьшится в 16 раз.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili