Вопрос задан 18.06.2023 в 17:21. Предмет Геометрия. Спрашивает Юрковская Настюша.

Помогите срочно!! 2. В основі призми лежить трикутник зі сторонами 8см, 13см, 15см. Діагональ

бічної грані, що містить меншу сторону основи, дорівнює 10см. Знайти об’єм призми.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Меньшикова Кристина.

Ответ:

об'єм піраміди : V=1/3S*h

площу основи знайдемо по формулi Герона

S=корiнь (p(p-a)(p-b)(p-c)), де p - напiвпериметр

S= корiнь (21*(21-13)*(21-14)*(21-15)) =84см^2

V=1/3*84*10=280cм^2

об'єм призми: V= S*h

S=a*b, де а та b - довжини сторiн

за теоремою Пiфагора:

а= корiнь ( 17^2-15^2)=8 cм

S=8*15=120 см^2

V= 120*10=1200cм^3

0 0
Отвечает Зайцева Евгения.
У него неправильное решение
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання цієї задачі потрібно визначити площу основи та висоту призми.

1. Визначення площі основи: Довжина сторон основи призми становить 8 см, 13 см і 15 см. За теоремою Піфагора, ми можемо визначити, чи цей трикутник є прямокутним. В трикутнику зі сторонами a, b і c, який є прямокутним, опуклим та притаманним катету довжиною a і b, а гіпотенузу довжиною c, справджується умова a^2 + b^2 = c^2. Підставляючи значення сторін трикутника, ми отримуємо: 8^2 + 13^2 = 64 + 169 = 233, а 15^2 = 225. Оскільки 233 не дорівнює 225, трикутник не є прямокутним. Зауважимо, що сторони необхідних розмірів можуть утворювати різні трикутники, але для цієї задачі нас цікавить лише один внутрішній кут, тому ми не змінимо його розміри і продовжимо розв'язок.

Для визначення площі основи використовуємо формулу Герона: S = sqrt (p * (p - a) * (p - b) * (p - c)), де p - півпериметр.

Знаходимо півпериметр: p = (a + b + c) / 2 = (8 + 13 + 15) / 2 = 36 / 2 = 18.

Обчислюємо площу основи: S = sqrt (18 * (18 - 8) * (18 - 13) * (18 - 15)) = sqrt (18 * 10 * 5 * 3) = sqrt (2700) ≈ 51.96 см^2.

2. Визначення висоти призми: Дано, що діагональ бічної грані, що містить меншу сторону основи, дорівнює 10 см. Утворену діагональ можна розділити на дві висоти призми, симетричні відносно площини основи. Назвемо їх h1 та h2. Застосовуючи теорему Піфагора, ми можемо знайти h1 та h2: h1^2 = c^2 - a^2 = 10^2 - 8^2 = 100 - 64 = 36, h2^2 = c^2 - b^2 = 10^2 - 13^2 = 100 - 169 = -69. Зверніть увагу, що h2^2 виходить від'ємним значенням. Це означає, що діагональ не може бути розділена на рівні висоти. Отже, призма не може мати таку форму.

3. Визначення об'єму призми: Оскільки висота призми не може бути визначена, ми не можемо обчислити об'єм. Задачу неможливо вирішити.

Отже, об'єм призми не може бути знайдений, оскільки висота призми не може бути визначена.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос