
Найдите неизвестные элементы треугольника АВС, если: b= 4,5, угол A=30°, угол C=75°. помогите
пожалуйста срочно!

Ответы на вопрос

Ответ и решение на фото (не полный как считать стороны я не знаю)




Given Information:
We are given the following information about triangle ABC: - Side b = 4.5 - Angle A = 30° - Angle C = 75°Solution:
To find the unknown elements of triangle ABC, we can use the properties of triangles and trigonometry.Finding Side a:
We can use the Law of Sines to find side a. The Law of Sines states that the ratio of the length of a side of a triangle to the sine of its opposite angle is constant. In other words:a / sin(A) = b / sin(B) = c / sin(C)
Since we know side b and angle A, we can rearrange the formula to solve for side a:
a = (b * sin(A)) / sin(B)
Substituting the given values, we have:
a = (4.5 * sin(30°)) / sin(B)
To find angle B, we can use the fact that the sum of the angles in a triangle is 180°:
Angle B = 180° - Angle A - Angle C
Substituting the given values, we have:
Angle B = 180° - 30° - 75°
Now we can calculate side a using the formula:
a = (4.5 * sin(30°)) / sin(B)
Let's calculate the value of side a and angle B.
Calculation:
Using a calculator, we find that sin(30°) ≈ 0.5.Substituting the values into the formula, we have:
a = (4.5 * 0.5) / sin(B)
To find sin(B), we can use the fact that the sum of the angles in a triangle is 180°:
sin(B) = sin(180° - Angle A - Angle C)
Substituting the given values, we have:
sin(B) = sin(180° - 30° - 75°)
Using a calculator, we find that sin(75°) ≈ 0.9659.
Substituting the value of sin(B) into the formula, we have:
a = (4.5 * 0.5) / 0.9659
Calculating the value of side a, we get:
a ≈ 2.318
Therefore, side a is approximately 2.318.
Finding Angle B:
Now that we have the values of sides a and b, we can use the Law of Sines to find angle B. The Law of Sines states that the ratio of the length of a side of a triangle to the sine of its opposite angle is constant. In other words:a / sin(A) = b / sin(B) = c / sin(C)
Since we know sides a and b, we can rearrange the formula to solve for angle B:
sin(B) = (b * sin(A)) / a
Substituting the given values, we have:
sin(B) = (4.5 * sin(30°)) / 2.318
Calculating the value of sin(B), we get:
sin(B) ≈ 0.974
To find angle B, we can use the inverse sine function:
Angle B = sin^(-1)(0.974)
Using a calculator, we find that:
Angle B ≈ 76.6°
Therefore, angle B is approximately 76.6°.
Summary:
Based on the given information, we have found the following unknown elements of triangle ABC: - Side a ≈ 2.318 - Angle B ≈ 76.6°Please note that these values are approximate due to rounding.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili