Вопрос задан 15.06.2023 в 09:23. Предмет Геометрия. Спрашивает Petrichenko Natalia.

Дано А(6,3) В(4,1) С(2,3). Знайти координати векторів ВС і ВА і |ВС-АВ|​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Узакбай Динара.

Ответ:

Відстань між двома точками знаходиться по формулі:

ВС=√(х₂-х₁)²+(у₂-у₁)²

ВС=√(2-4)²+(3-1)²=2√2

ВА=√(6-4)²+(3-1)²=2√2

АВ=√(4-6)²+(1-3)²=2√2

|ВС-АВ|​=|2√2-2√2|​=0

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання цієї задачі ми можемо використовувати формулу відстані між двома точками в просторі:

d = √((x₂ - x₁)² + (y₂ - y₁)²)

Дано точки A(6,3), B(4,1) і C(2,3). Знайдемо координати вектора ВС:

ВС = (x_C - x_B, y_C - y_B) = (2 - 4, 3 - 1) = (-2, 2)

Знайдемо координати вектора ВА:

ВА = (x_A - x_B, y_A - y_B) = (6 - 4, 3 - 1) = (2, 2)

Тепер знайдемо різницю між векторами ВС і ВА:

ВС - ВА = (-2, 2) - (2, 2) = (-4, 0)

Щоб знайти довжину цієї різниці, використаємо формулу відстані:

|ВС - ВА| = √((-4)² + 0²) = √(16 + 0) = √16 = 4

Отже, координати вектора ВС дорівнюють (-2, 2), координати вектора ВА дорівнюють (2, 2), а довжина різниці між векторами ВС і ВА дорівнює 4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос