Вопрос задан 24.06.2018 в 06:38. Предмет Геометрия. Спрашивает Хайлова Алёна.

Вершины правильного шестиугольника со стороной 2 служат центрами кругов радиуса ( корень) 2 .

Найдите площадь части шестиугольника, расположенной вне этих кругов?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вайсберг Валерия.

В этой задаче есть только одна трудность - правильно нарисовать фигуру. 

На чертеже хорошо видно, что из площади шестиугольника надо вычесть площадь шести равнобедренных прямоугольных треугольников со стороной шестиугольника длины 2 в качестве гипотенузы, и площади шести секторов с углом раствора 30 градусов (угол шестиугольника 120, минус 2 раза по 45) и радиусом корень(2);

Собирая все это, получаем

Площадь шестиугольника 6*2^2*sin(60)/2 = 6*корень(3);

Площадь шести треугольников 6*2*1/2 = 6;

Площадь шести отдинаковых секторов с углом 30 градусов - это просто половина площади круга, то есть pi^(корень(2))^2/2 = pi :)

Ответ S = 6*(корень(3) - 1) - pi;  

 

Это примерно 0,12 (точнее 0,120349836771338) от площади шестиугольника.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос