
Вопрос задан 23.06.2018 в 22:46.
Предмет Геометрия.
Спрашивает Пивкина Женя.
помогиите: две окружности имеют общую точку М и общую касательную в этой точке. Прямая АВ касается
одной окружности в точке А, а другой в точке В. Докажите что точка М лежит на окружности с диаметром АВ.

Ответы на вопрос

Отвечает Беляев Егорушка.
Надо доказать, что угол АМВ прямой. Делаем такие построения - проводим радиусы О1А и О2В в точки касания, проводим линию центров О1О2 (она в данном случае не понядобится, но с ней спокойнее:)) и обозначаем точку пересечения общих касательных АВ и той, что, проходит через М, как К. (Ясно, что МК перпендикулярно О1О2, это тоже не приголится).
Важно вот что.
угол АМК = (угол АО1М)/2 (угол между касательной и хордой и центральный угол этой хорды, один измеряется половиной дуги АМ, другой - целой дугой АМ). Аналогично
угол ВМК = (угол ВО2М)/2.
но поскольку О1А II О2В, угол АО1М + угол ВО2М = 180 градусов, поэтому
угол АМВ равен 90 градусов. Поэтому если построить на АВ окружность, как на диаметре, точка М попадет на эту окружность.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili